

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Adsorption Profile and Complexing Behavior of Hg(II) Ions onto Polyurethane Foam from Acidic Mixed Solvent System (H₂O + Ethanol) Containing Dithizone

Muhammad Mufazzal Saeed^a, Abdul Ghaffar^a

^a Chemistry Division, Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan

Online publication date: 15 September 2010

To cite this Article Saeed, Muhammad Mufazzal and Ghaffar, Abdul(2010) 'Adsorption Profile and Complexing Behavior of Hg(II) Ions onto Polyurethane Foam from Acidic Mixed Solvent System (H₂O + Ethanol) Containing Dithizone', Separation Science and Technology, 45: 14, 2095 – 2103

To link to this Article: DOI: 10.1080/01496395.2010.504439

URL: <http://dx.doi.org/10.1080/01496395.2010.504439>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Adsorption Profile and Complexing Behavior of Hg(II) Ions onto Polyurethane Foam from Acidic Mixed Solvent System (H₂O + Ethanol) Containing Dithizone

Muhammad Mufazzal Saeed and Abdul Ghaffar

Chemistry Division, Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan

A new method has been developed to remove Hg(II) metal ion by preconcentrating onto polyurethane foam (PUF) from acidic mixed solvent system (0.5 N HNO₃ + 25% ethanol) containing dithizone. Batch experiments were carried out to assess adsorption equilibrium and kinetic behavior by varying parameters such as acid concentration, agitation time, aqueous- ethanol ratio, and metal ion concentration. These facilitated the computation of kinetic parameters and adsorption behavior. The optimum conditions of sorption of mixed solvent system are 0.5 mol L⁻¹ HNO₃ + 25% ethanol containing 1.95 × 10⁻⁴ mol L⁻¹ of dithizone with 40 minutes of equilibrium time. The kinetic parameters indicate that sorption follows the first-order reaction and intraparticle diffusion process. The obtained data followed the adsorption models. i.e., Freundlich, Langmuir, and Dubinin–Radushkevich (D-R) isotherms successfully. The thermodynamics studies indicate that sorption increases with rise in temperature, entropy driven, and endothermic chemisorption. The nature of the sorption mechanism of Hg(II) ions with dithizone and PUF has been discussed and the composition of the adsorbed complex has been predicted. The effect of different foreign cations and anions has been investigated. The data indicates that only EDTA, thiosulphate, and cyanide are interfering. The method was applied on different synthetic mixtures and saline solution to test the selectivity of the new method for the abatement of Hg(II) ions from mixed solvent system.

Keywords adsorption; dithizone; Hg(II); kinetics; polyurethane foam; thermodynamics

INTRODUCTION

Mercury is considered as a highly dangerous element because of its accumulation and persistent character in the environment and biotic. The major source of mercury pollution in the aquatic environment is industries such as chloroalkali, paint, pulp, and fertilizers industries. Methyl mercury is neurotoxic and more dangerous to the human body. The conversion of inorganic mercury into methyl mercury by the action of microorganisms under aerobic conditions, has received considerable attention to control and for the removal of the mercury from industrial waste (1,2).

Received 2 July 2009; accepted 20 April 2010.

Address correspondence to Muhammad Mufazzal Saeed, Chemistry Division, P. O. Nilore, Islamabad, Pakistan. E-mail: mufazzal@pinstech.org.pk

Preconcentration and separation methods for modern analytical chemistry are very important prior to instrumental analysis. These separations/preconcentration methods are based on liquid-liquid extraction, sorption on metal oxides, ion exchange resins, and solid-liquid extraction, etc. and with immobilized reagents such as dithiozone, diethyldithiocarbamates, 8 hydroxyquinolin, etc. onto solid support (3–11).

Dithiozone (DZ) is widely used for the separation/preconcentration of mercury in liquid liquid extraction or on liquid solid support. Similarly at trace level concentration for the rapid collection of this dangerous inorganic pollutant for the quantitative separation of mercury ions from different matrices, the dithizone loaded polyurethane foam packed column based on an analytical point of view were reported in the literature (12,13).

PUF is a cheaper and widely used sorbent for the separation and preconcentration of trace metal ions that reflects its potential in the environmental and analytical chemistry (8,13,14). The sorption properties of PUF can be altered with immobilization of different organic reagents towards trace metal ions. A number of mechanisms such as ion exchange, ligand addition, ion association, surface sorption, etc. have been reported depending upon the nature of the chemical species sorbed and sorption conditions (13).

In our laboratory the sorption behavior of a number of elements including Hg(II), Sb(V), Tm(III) onto PUF has been studied in details which clearly indicated that accumulation of trace metal ions via adsorption phenomena (15–17). However, in many instances the reagent loaded foam gives insoluble flakes. To avoid this, the mixed solvent system is selected to study the sorption behavior of toxic metal ions onto virgin PUF. This communication describes the results of the sorption behavior of Hg(II) onto unloaded PUF from mixed solvent system containing dithiozone.

EXPERIMENTAL

The radiotracer of ²⁰³Hg(II) was prepared by the irradiation of specpure HgO in PARR-I reactor of this institute at the flux of 7 × 10¹³ n cm⁻² sec⁻¹. The irradiated oxide (~30 mg) was dissolved in concentrated HNO₃,

heated to dryness and the residue was dissolved in 25 mL of 0.1 M HNO_3 solution for further use. The radio-nuclide purity was checked on 4K series 85 Canberra (USA) multichannel analyzer coupled with 25 cm^3 Ge(Li) detector.

All other reagents used were of analar grade. Laboratory grade dithiozone and HPLC grade ethanol from Merck (Darmstadt, Germany) were used as such. The polyurethane foam plugs were prepared and washed as described elsewhere (18). The total pore area of PUF was measured using a Micrometric porosimeter was $67\text{ m}^2\text{ g}^{-1}$, total intrusion volume was $0.14\text{ cm}^3\text{ g}^{-1}$ and average pore diameter was 8.3 nm. The stock solution of $7.8 \times 10^{-4}\text{ mol L}^{-1}$ of dithizone in ethanol was prepared and used for further studies.

PROCEDURE

The 4.5 mL of known concentration of acid solutions were mixed with 1.5 mL of $7.8 \times 10^{-4}\text{ mol L}^{-1}$ dithizone ethanol stock solution in a Pyrex glass culture tube with a polyethylene cap. A known amount of radiotracer $^{203}\text{Hg(II)}$ was added and the contents were mixed thoroughly. An aliquot of 2 mL was taken in a vial for gross gamma - counts (A_o). The remaining solution was equilibrated with 29 mg of washed PUF for 30 minutes on a Stuart Scientific Wrist - action shaker. Thereafter, 2 mL of aliquot was assayed (A_e) radiometrically on Tennelac (USA) counting assembly equipped with a well- type NaI(Tl) crystal.

For thermodynamic studies the solution was taken in a culture tube and dipped in the Gallenkamp thermostirrer-100 Model BKL; 234, water bath at constant temperature and the same procedure was adopted as described above. During shaking about 70% length of the culture tube remained dipped in the water bath so that the solid-liquid contents immersed completely in water at the controlled temperature.

The percentage of sorbed Hg(II) ions at equilibrium was calculated from the difference in the activity of an aliquot drawn before (A_o) and after shaking (A_e). The

net gamma - activity of the $3.48 \times 10^{-5}\text{ mol L}^{-1}$ solution of Hg(II) ions was in the range of 35,000–40,000 cpm mL^{-1} . The percentage sorption and distribution coefficient (K_d), which is the molar ratio of the adsorbate in the solid and liquid phases, were calculated as:

$$\% \text{ Adsorption} = \frac{A_o - A_e}{A_o} \times 100 \quad (1)$$

$$K_d = \frac{\% \text{ Adsorption}}{100 - \% \text{ Adsorption}} \times \frac{\text{Volume of solution in mL (V)}}{\text{Weight of PUF in g (W)}} \quad (2)$$

The % adsorption and the distribution coefficient (K_d) can be correlated as

$$\% \text{ Adsorption} = \frac{100K_d}{K_d + \frac{V}{W}} \quad (3)$$

All the experiments were performed at $25 \pm 2^\circ\text{C}$ or at a temperature specified otherwise. The results are the average of at least triplicate independent measurements and overall precision in most cases is within $\pm 2\%$. The linear regression and slop analyses for the statistical data were carried out.

RESULTS AND DISCUSSION

The effect of different electrolytes on the sorption of $3.48 \times 10^{-5}\text{ mol L}^{-1}$ of $^{203}\text{Hg(II)}$ solution in the presence of arbitrary chosen 25% (V/V) ethanol containing $1.95 \times 10^{-4}\text{ mol L}^{-1}$ of dithizone on PUF was investigated. The results of sorption in different electrolytes, namely HCl, HNO_3 , H_2SO_4 , and HClO_4 acids of varied concentration are tabulated in Table 1. The sorption of Hg(II) ions in the absence of dithizone from mixed solvent system was negligible. Table 1 indicates that sorption was quantitative in all acids in the concentration range $0.01\text{--}1.5\text{ mol L}^{-1}$ investigated. The nitric acid seems to be a better mixed solvent system

TABLE 1
The effect of different electrolytes on the sorption of $^{203}\text{Hg(II)}$ ($3.48 \times 10^{-5}\text{ mol L}^{-1}$) onto PUF in the presence of 25% ethanol containing $1.95 \times 10^{-4}\text{ mol L}^{-1}$ of dithizone after 40 minutes shaking time

N	HClO ₄		HNO_3		H_2SO_4		HCl	
	Sorption (%)	K_d (mL g^{-1})	Sorption (%)	K_d (mL g^{-1})	Sorption (%)	K_d (mL g^{-1})	Sorption (%)	K_d (mL g^{-1})
1.5	98.13	7197	99.34	21046	97.29	4953	95.05	2448
1.0	96.23	3525	99.43	25692	93.85	2107	82.62	656
0.5	98.10	7091	99.88	78953	85.34	803	82.38	645
0.1	97.76	5754	99.33	19747	85.25	727	85.48	812
0.01	97.55	5504	94.86	2545	85.1	787	87.63	977

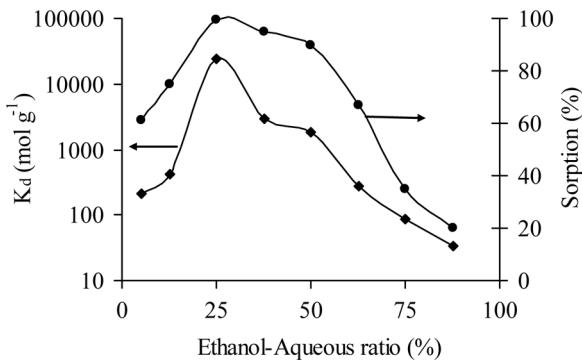


FIG. 1. Effect of ethanol ratio on the sorption of Hg(II) ions onto PUF from (0.5 M HNO₃ + ethanol) aqueous medium containing 1.95×10^{-4} mol L⁻¹ of dithizone.

because of the maximum distribution coefficient of Hg(II) ions. The maximum sorption and distribution was found in 0.5 mol L⁻¹ HNO₃ aqueous – ethanol system and was therefore selected for further studies.

Dithizone is insoluble in aqueous solution but with the addition of ethanol in aqueous phase, its solubility increases. In order to find out the maximum ratio of 0.5 mol L⁻¹ HNO₃ – ethanol aqueous phase, the sorption of Hg(II) ions was studied with different aqueous ethanol ratios containing dithizone and results are shown in Fig. 1. The 25% (V/V) ethanol aqueous ratio was found to be optimum. This optimum ratio was selected for further experiments. The decrease in sorption with the increase in the ethanol ratio (>25%), is due to high solubility of Hg – dithizone complex in mixed solvent system rather than sorption onto PUF.

EFFECT OF SHAKING TIME

The effect of equilibrium time on the sorption of 3.48×10^{-5} mol L⁻¹ of Hg(II) ions form mixed solvent containing 1.95×10^{-4} mol L⁻¹ of dithizone was carried out in the range of 1–60 minutes. The maximum equilibrium time was observed to be 40 minutes and above (Fig. 2). This data was subjected to the kinetic modeling. PUF is an inert porous medium with spherically symmetric macropores and micropores. Adsorption in macropores is rapid and characteristic of film diffusion. The sorption in micropores is slow and hindered due to the small size of the pores and similar in size to the solute molecule. Diffusion in such pores would be characteristic of intraparticle diffusion. In this regard the standard Weber Morris (19) equation was tested in the form as:

$$q_t = R_d \sqrt{t} \quad (4)$$

where q_t is the sorbate concentration in mol g⁻¹ at time t , and R_d is the rate constant of intraparticle diffusion coefficient in mol g⁻¹ t^{-1/2}. Figure 3 shows that the plot q_t vs. $t^{1/2}$ is not linear indicating that the entire data did not follow the Weber

FIG. 2. Effect of shaking time on the sorption of Hg(II) ions onto PUF from (0.5 M HNO₃ + 25% Ethanol) aqueous medium containing 1.95×10^{-4} mol L⁻¹ of dithizone.

Morris equation. However, for intraparticle diffusion process, Reichenberg equation was also tested in the form:

$$F = (1 - 6/\pi^2)e^{-Bt} \quad (5)$$

The value of Bt is the mathematical function of F and can be calculated from the following relationship:

$$Bt = -0.4977 - 2.303 \log (1 - F) \quad (6)$$

The plot of Bt vs time is linear and passing through the origin as shown in Fig. 4. This indicates that sorption is strongly favored in the intraparticle diffusion process and controls the kinetics of Hg(II) dithizone complex sorption on PUF.

Based on the mass action process, regardless of the mechanism used, there is a correlation between q , the number of Hg(II) – dithizone complex adsorbed per unit area at a given pressure and temperature in time “ t ” required to complete the adsorption process as shown by Lagergren in the form of first-order reaction equation:

$$q_t = q_{\max}(1 - e^{-k_l t}) \quad (7)$$

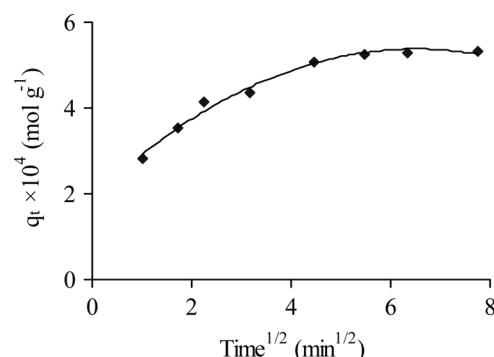


FIG. 3. Concentration of Hg(II) adsorbed as function of time onto PUF from (0.5 M HNO₃ + 25% Ethanol) aqueous medium containing 1.95×10^{-4} mol L⁻¹ of dithizone, shaking time 40 minutes.

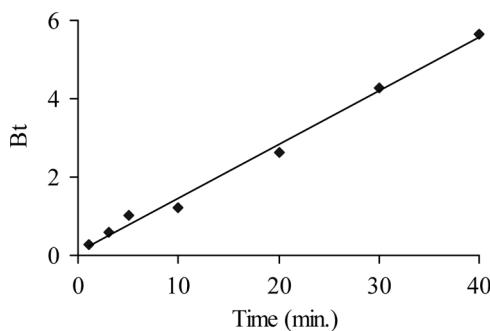


FIG. 4. Reichenberg plot of the sorption of Hg(II) ions onto PUF from (0.5 M HNO₃ + 25% Ethanol) aqueous medium containing 1.95×10^{-4} mol L⁻¹ of dithizone, shaking time 40 minutes.

or

$$\ln(1 - F) = -kt \quad (8)$$

where $F = q_t/q_{\max}$, q_t is the amount of solute adsorbed in mol g⁻¹ at time t , q_{\max} is the maximum amount of solute adsorbed in mol g⁻¹ at equilibrium and k is the adsorption rate constant. The plot of $\ln(1 - F)$ vs. time is shown in Fig. 5. The straight line indicates that the adsorption process follows the first-order reaction with respect to adsorbed concentration. The numerical value of the first-order rate constant k of the sorption was calculated from the slope of the graph and was found to be 0.136 ± 0.005 min⁻¹.

EFFECT OF METAL ION CONCENTRATION

The variation of the distribution coefficient (K_d) relative to the concentration of mercury(II) ions itself was examined about 15-fold in the concentration range from 1.7×10^{-5} to 2.5×10^{-4} mol L⁻¹, utilizing 40 minutes shaking time under the optimized conditions. The results are shown in Fig. 6. A rapid decrease in the K_d value occurred with the increase in the initial concentration of

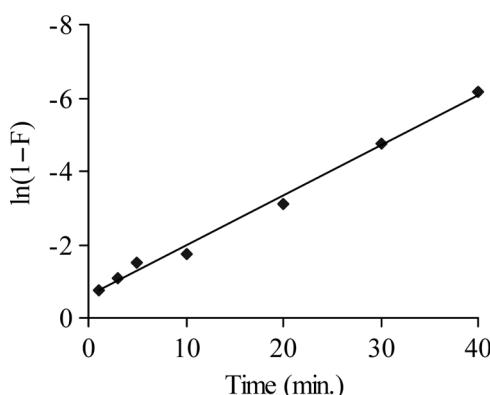


FIG. 5. Lagergern plot of Hg(II) ions sorption onto PUF from (0.5 M HNO₃ + 25% Ethanol) aqueous medium containing 1.95×10^{-4} mol L⁻¹ of dithizone, shaking time 40 minutes.

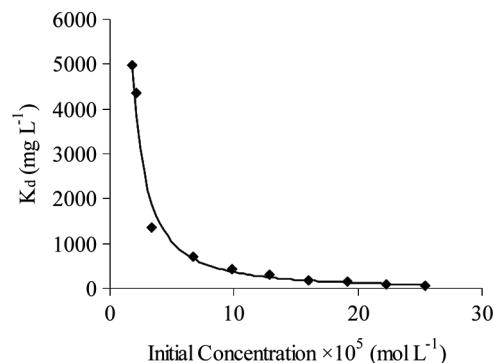


FIG. 6. Variation of K_d of sorption with initial Hg(II) ions concentration onto PUF from (0.5 M HNO₃ + 25% Ethanol) aqueous medium containing 1.95×10^{-4} mol L⁻¹ of dithizone, shaking time 40 minutes.

mercury(II) ions. The similar trend has also been observed for the sorption of Ag(I) ions and Hg(II) ions onto PUF (15,20). This can be explained by the fact that at lower metal ion concentration, sorption occurs preferentially at the most energetically favorable sites. At higher metal ion concentration, these strong active sites are fully occupied and sorption decreases. The sorption data was subjected to the different adsorption isotherms to describe the sorption equilibrium i.e., Frendulich, Langmuir, and D-R isotherms (19). The Frendulich isotherm was used for the heterogeneous surface in energy term. The Frendulich equation is widely used in environmental engineering practice to model the adsorption of metal ions from an aqueous medium empirically. The linear form of Frendulich isotherm is:

$$\log C_{\text{ads}} = \log K_F + \frac{1}{n} \log C_e \quad (9)$$

where C_{ads} is the amount of Hg(II) adsorbed in mol g⁻¹, C_e is the amount of Hg(II) in solution at equilibrium in mol L⁻¹ and K_F and $1/n$ are constants incorporating all factors affecting the adsorption capacity and an indication of the favorability of Hg(II) ions adsorption onto the adsorbent. The numerical values of K_F and $1/n$ are given in Table 2.

The Langmuir model was originally developed to represent the chemisorption of a set of well-defined localized adsorption sites having the same energy of sorption, independent of surface coverage, and no interaction between adsorbed molecules. The maximum sorption is noticed when the surface of the sorbent is covered with a monolayer of the adsorbate. The familiar linear form of the Langmuir isotherm based on kinetic consideration is expressed as:

$$\frac{C_e}{C_{\text{ads}}} = \frac{1}{Qb} + \frac{C_e}{Q} \quad (10)$$

TABLE 2
Different parameters of Hg(II) ions sorption onto PUF
from mixed solvent system

Constants	Values
Freundlich isotherm constants	
$1/n$	$= 0.36 \pm 0.02$
K_F	$= (4.4 \pm 0.12) \times 10^{-4} \text{ mol g}^{-1}$
R^2	$= 0.9852$
Langmuir isotherm constants	
Q	$= (1.21 \pm 0.04) \times 10^{-5} \text{ mol g}^{-1}$
b	$= (5.19 \pm 0.16) \times 10^5 \text{ L mol}^{-1}$
R^2	$= 0.9921$
D-R isotherm constants	
β	$= -0.00241 \pm 0.00012$
X_{DR}	$= (5.02 \pm 0.49) \times 10^{-5} \text{ mol g}^{-1}$
E	$= 14.40 \pm 0.35 \text{ kJ mol}^{-1}$
R^2	$= 0.9865$
Thermodynamics parameters	
ΔH	$= 35 \pm 2 \text{ kJ mol}^{-1}$
ΔS	$= 147 \pm 6 \text{ J mol}^{-1} \text{ K}^{-1}$
ΔG	$= -8.01 \pm 0.55 \text{ kJ mol}^{-1}$
$-T\Delta S$	$= 44 \pm 3 \text{ kJ mol}^{-1}$
ΔG_{ads}	$= -42 \pm 1 \text{ kJ mol}^{-1}$

where C_e and C_{ads} are expressed as above, Q is the constant related to the maximum amount of solute adsorbed in mol g^{-1} , and b is the constant related to the binding energy of solute. The numerical values of the constants are given in Table 2.

In order to evaluate the physio-chemical properties of adsorption of Hg(II) ions onto PUF in the presence of dithizone, the data were applied to the D-R isotherm model which assumes that there are small regions on the sorption surface that are uniform in structure and energetically homogenous and compatible to the adsorbate. The linear form of D-R isotherm is:

$$\ln C_{ads} = \ln X_{DR} - \beta \varepsilon^2 \quad (11)$$

where X_{DR} is the maximum amount of solute adsorbed in mol g^{-1} , β is the net adsorbate – adsorbent affinity coefficient in $\text{kJ}^2 \text{ mol}^{-2}$ and ε is Polanyi potential ($\varepsilon = RT \ln(1 + 1/C_e)$), where R is the gas constant in $\text{J mol}^{-1} \text{ K}^{-1}$, and T is the temperature in Kelvin. The numerical values of β and X_{DR} are given in Table 2.

The equilibrium plot of C_{ads} vs C_e is shown in Fig. 7. This figure indicates that the data point of the sorption of Hg(II) ions in the presence of dithizone onto PUF strictly followed the adsorption isotherm models. The sorption of Hg(II) ions followed the Langmuir model over the entire range of metal ion concentration under investigation



FIG. 7. Adsorption isotherm of Hg(II) ions onto PUF from (0.5 M $\text{HNO}_3 + 25\%$ Ethanol) aqueous medium containing $1.95 \times 10^{-4} \text{ mol L}^{-1}$ of dithizone, shaking time 40 minutes.

while the sorption of D-R isotherm and Freundlich isotherm satisfied this sorption behavior at lower metal ions concentration i.e., upto $1.9 \times 10^{-4} \text{ mol L}^{-1}$.

In order to study the nature of bonding, the affinity coefficient β of D-R isotherm can be related to mean sorption energy (E) as

$$(E) = (-2\beta)^{-1/2} \quad (12)$$

which is the free energy transfer of one mole of adsorbate to the surface of the adsorbent in solution from infinity. The numerical value of E in the range $1-8 \text{ kJ mol}^{-1}$ and $9-16 \text{ kJ mol}^{-1}$ represents the physical sorption and chemical sorption respectively. The numerical value of E comes out to be $14.4 \pm 0.35 \text{ kJ mol}^{-1}$ indicating that chemisorption phenomena is predominant for the present system. Moreover, the high value of sorption free energy reflects the strong bonding between the adsorbate and the adsorbent.

The numerical values of the constants of the above adsorption isotherms were evaluated from slopes and intercepts of the linear graphic forms of adsorption isotherms and are summarized in Table 2. This table clearly indicates that the sorption affinity ($1/n$) constant of the Freundlich isotherm is < 1 indicating favorable adsorption and encompassing the exponential distribution of active sites in their energy. According to the correlation coefficient (R^2) obtained, we deduced that the Langmuir model is correlated the experimental data very well as compared to the other adsorption models for Hg(II) ions. Moreover, the experimental maximum sorption capacity of PUF under the optimum sorption conditions of Hg(II) ions was found to be $(1.25 \pm 0.1) \times 10^{-5} \text{ mol g}^{-1}$ which is near to the theoretical sorption capacity (Q) of Langmuir isotherm $(1.21 \pm 0.04) \times 10^{-5} \text{ mol g}^{-1}$ (Table 2).

EFFECT OF TEMPERATURE

The variation of sorption behavior of 3.48×10^{-5} mol L⁻¹ of Hg(II) ions on PUF from mixed solvent system (0.5 mol L⁻¹ HNO₃ + 25% ethanol) containing 1.95×10^{-4} mol L⁻¹ of dithizone using 40 min shaking time from 5 to 45°C has been studied. Different thermodynamic parameters have been evaluated using the following equations.

$$\log K_c = \frac{-\Delta H}{2.303RT} + \frac{\Delta S}{2.303R} \quad (13)$$

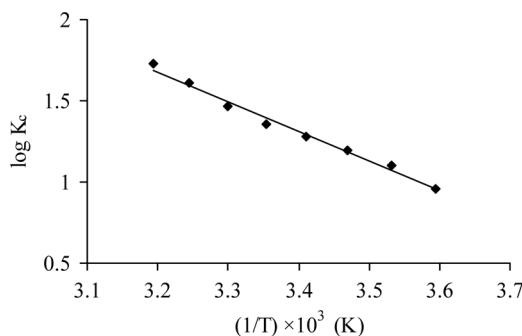
and

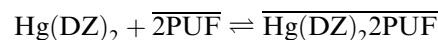
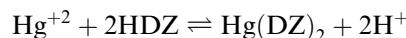
$$\Delta G = -RT \ln K_c \quad (14)$$

The equilibrium constants (K_c) is simply the distribution ratio of the Hg(II) ions between solid – liquid phase. The numerical values of "K_c" was worked out as reported earlier (19). The plot of log K_c vs. 1/T is shown in Fig. 8. From the slope and intercept of the plot the numerical values of the heat of enthalpy (ΔH) and entropy (ΔS) were calculated and are given in Table 2. The Gibb's free energy (ΔG) was determined using above Eq. (14) and given in Table 2. The positive values of ΔH and negative value of ΔG indicate that sorption process is endothermic and spontaneous in nature. The high value of ΔS reflects that the stability of sorbed species is entropy driven. Similarly, the numerical value of the term $-T\Delta S$ is 44 ± 3 kJ mol⁻¹ which is greater than ΔH (Table 2), supports the entropy driven sorption due to decrease in the randomness of the system that results is the positive entropy change (21).

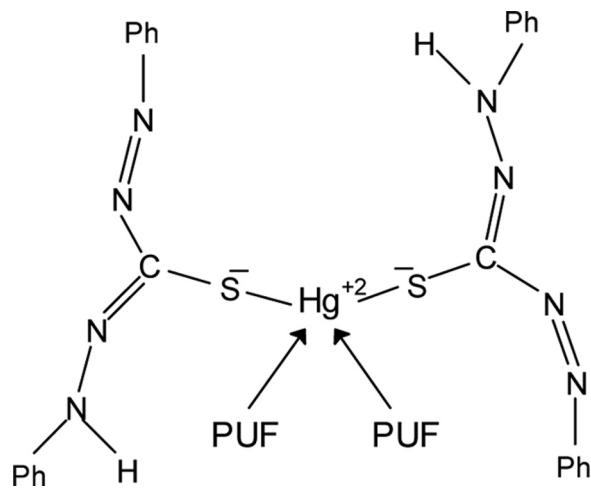
The adsorption free energy (ΔG_{ads}) related to the micro-pores filling of the PUF as pore width approaches to the adsorbate dimensions has been evaluated using the following relationship.

$$\Delta G_{ads} = -RT \ln(b\omega) \quad (15)$$





FIG. 8. Variation of equilibrium constant of Hg(II) – dithizone complex sorption onto PUF with temperature from (0.5 M HNO₃ + 25% Ethanol) aqueous medium containing 1.95×10^{-4} mol L⁻¹ of dithizone, shaking time 40 minutes..

where b is the Langmuir constant, ω is the molal concentration of the sorption medium. Hence in our system, the sorption medium was the mixed solvent system, therefore, necessary corrections have been carried out using the molal concentration. The large negative value of ΔG_{ads} as shown in Table 2, indicates the strong affinity of Hg(II) ions sorption onto PUF and related to the pore filling of the PUF sorbent which is energetically homogenous and close to the size of the Hg(II) complex (22).


SORPTION MECHANISM

Although dithizone is a common reagent for the colorimetry determination of certain metals, the structure of the metal derivatives has remained uncertain. In fact this ligand has two active sites for bonding i.e., sulfur and nitrogen atoms of the azo group of dithizone (23). The X-ray study indicates that when nitrogen atom is bonded strongly to the central metal ions, it forms a tetrahedral structure and the isolation of the metal–dithizone complex is possible such as Ni(II), Zn(II), and Co(II) complexes of dithizone (24,25). However, when charge neutralization and coordination took place by sulfur atom of dithizone and there was a weak bonding of the nitrogen atom with the central metal atom, which then resulted in a complex of metal dithizone which in turn was ended with a distorted tetrahedral or linear structure such as Hg(II)-dithizone complex. Hg(II) dithizone complex was isolated from aqueous pyridine as deep red solvated needles. The arrangement of the isolated complex is Hg(DZ)₂ 2Py and was best described as a distortion of linear bicovalent mercury. As there was no internal hydrogen bonding, the pyridine molecules occupy the space like a channel parallel to the z-axis (26).

Similarly, in this system, the light red coloration of PUF produced on the sorption of Hg(II) – dithizone indicates that PUF plays an important role in the sorption of the Hg(DZ)₂ molecules. Since mercury is a soft metal, it can satisfy its coordination of number four by interaction with nitrogen atom of the isocyanates group present in PUF via a ligand addition mechanism. The charge of Hg(II) ion is neutralized by the interaction of the sulfur atom of the dithizone. The overall mechanism is as follows.

where DZ is dithizone and the bar quantities indicates the reaction in PUF. The possible structure of Hg(DZ)₂ · 2PUF complex is as follows:

The thermodynamic parameters support the stability of the sorbed complex. The distorted tetrahedral geometry contributes to the high positive value of enthalpy. The high value of entropy indicates that the sorbed complex is more oriented as compared to the hydrated state of Hg(II) ions in mixed solvent system and stability of the sorbed complex is entropy driven. Moreover, there is no chelate group of dithizone affecting the system but the high value of entropy as compared to the other reported systems strongly supports the stability and interaction of PUF with Hg(II) – dithizone complex and subsequently the proposed

mechanism (15,27). The numerical value of the sorption free energy (E) of the system is $14.40 \pm 0.35 \text{ kJ mol}^{-1}$ derived from the DR isotherm also supports the ligand addition type chemisorption in the present investigation.

EFFECT OF FOREIGN IONS

The sensitivity of PUF for the preconcentration of Hg(II) – dithizone complex from mixed solvent system has been checked under the optimum conditions of sorption. The addition of foreign ions may change the environments of the sorption medium and the solution chemistry of central metal ions that effects on the sorption behavior. In Table 3, the effect of different anions on the sorption behavior of Hg(II) – dithizone complex onto PUF from a mixed solvent system is given. This table indicates that cyanide and EDTA anions masked the sorption of Hg(II) ions completely. This behavior can be explained through the coordination chemistry of these ions. The acidic form of cyanide and EDTA anions have very low dissociation constants, chemically stable but labile. These anions have a strong tendency to replace the hydrogen ions with metal ions through substitution reaction and formed more stable and inert complexes with Hg(II) ions. The stability constant of $[\text{Hg}(\text{CN})_4]^{2-}$ and $\text{Hg}(\text{EDTA})^{2-}$ complexes are 10^{41} and 10^{22} , respectively (28). Thiosulphate and thiourea reduce the Hg(II) to Hg(I) ions that may not sorb onto PUF. However, the effect of chloride anions is interesting.

TABLE 3
Effect of different anions on the sorption of $^{203}\text{Hg}(\text{II})$ ($3.48 \times 10^{-5} \text{ mol L}^{-1}$) ions onto PUF from mixed solvent system containing $1.95 \times 10^{-4} \text{ mol L}^{-1}$ of dithizone, 40 minutes shaking time

Anions	Compound added	Concentration (mol L^{-1})	K_d (mL g^{-1})	Percent sorption
Nil	Nil	Nil	78953	99.8
Chloride	NaCl	1.7×10^{-1}	6396	97.8
Bromide	NaBr	9.2×10^{-2}	1791	92.9
Fluoride	NaF	2.4×10^{-1}	1693	92.5
Iodide	NaI	6.7×10^{-2}	10188	98.6
Perchlorate	NaClO ₄	8.2×10^{-2}	3525	96.2
Sulphate	Na ₂ SO ₄	7.0×10^{-2}	8616	98.4
Cyanide	NaCN	2.1×10^{-1}	<1	<1
EDTA	Na ₂ C ₁₀ H ₁₈ N ₂ O ₁₀	2.7×10^{-2}	<25.3	<15.5
Ascorbate	C ₆ H ₈ O ₆	5.7×10^{-2}	595	81.2
Thiourea	H ₂ NCSNH ₂	1.3×10^{-2}	798	58.9
Phosphate	Na ₂ HPO ₄	7.1×10^{-2}	4157	96.7
Oxalate	Na ₂ C ₂ O ₄	7.4×10^{-2}	2870	95.4
Acetate	CH ₃ COONa	1.2×10^{-1}	10314	98.6
Thiocyanate	NaSCN	1.2×10^{-1}	4729	97.2
Tartrate	Na ₂ C ₄ H ₄ O ₈ · 2H ₂ O	4.4×10^{-2}	1773	92.3
Citrate	C ₆ H ₅ Na ₃ O ₇ · 2H ₂ O	3.4×10^{-2}	7441	98.1
Nitrite	NaNO ₂	1.4×10^{-1}	776	84.9
Thiosulphate	Na ₂ S ₂ O ₃ · 5H ₂ O	1.2×10^{-1}	145	51.2

TABLE 4
Effect of different cations on the sorption of $^{203}\text{Hg}(\text{II})$ (3.48×10^{-5} mol L $^{-1}$) ions onto PUF from mixed solvent system containing 1.95×10^{-4} mol L $^{-1}$ of dithizone, 40 minutes shaking time

Cations	Compound added	Concentration (mol L $^{-1}$)	K_d (mL g $^{-1}$)	Percent sorption
Hg(II)	Nil	Nil	78953	99.8
Li(I)	LiCl	2.3×10^{-1}	903	86.5
Ag(I)	AgNO ₃	5.9×10^{-2}	627	82.1
Tl(I)	TlCl	4.2×10^{-2}	3693	96.4
Sr(II)	SrCl ₂ · 6H ₂ O	3.7×10^{-2}	1736	92.6
Ba(II)	BaCl ₂ · 2H ₂ O	4.1×10^{-2}	2015	93.5
Cd(II)	CdSO ₄ · 8H ₂ O	4.0×10^{-2}	2496	94.8
Mg(II)	Mg(NO ₃) ₂ · 6H ₂ O	3.9×10^{-2}	1713	92.5
Ca(II)	Ca(NO ₃) ₂ · 4H ₂ O	4.2×10^{-2}	1583	92.0
Pb(II)	Pb(NO ₃) ₂	3.0×10^{-2}	2759	95.2
Ni(II)	NiSO ₄ · 6H ₂ O	3.8×10^{-2}	13485	98.9
Co(II)	CoCl ₂ · 6H ₂ O	4.2×10^{-2}	5298	97.5
Mn(II)	MnCl ₂ · 4H ₂ O	5.1×10^{-2}	3047	95.7
Cu(II)	CuSO ₄ · 5H ₂ O	4.0×10^{-2}	1528	91.7
Al(III)	Al(NO ₃) ₃ · 4H ₂ O	2.6×10^{-2}	3025	95.6
Ce(III)	CeCl ₃ · 7H ₂ O	2.7×10^{-2}	1053	88.4
Bi(III)	Bi(NO ₃) ₃ · 5H ₂ O	2.1×10^{-2}	156	53.1
Y(III)	Y(NO ₃) ₃ · 6H ₂ O	2.6×10^{-2}	6325	97.7
Cr(III)	CrCl ₃ · 6H ₂ O	3.7×10^{-2}	8036	98.3
Fe(III)	Fe(NO ₃) ₃	4.1×10^{-2}	3624	96.3

Although mercury(II) ions form a stable complex with chloride ions, but in a mixed solvent system this phenomena was not observed, even in 10% chloride solution, which may be due to the solvent effect.

The effect of about a 100-fold concentration of different cations on the sorption behavior of Hg(II) dithizone complex onto PUF are summarized in Table 4. This table indicates that except Bi(III) ions all the metal ions under investigation do not hinder the sorption of Hg(II) dithizone complex. The interference of the Bi(III) could probably be due to competitive reaction of bismuth with dithizone in acidic solution (29).

The sensitivity and selectivity of the developed method was tested by applying the separation of Hg(II) – dithizone complex from synthetic mixtures of different compositions using batch method. The PUF was separated, washed with 0.5 mol L $^{-1}$ HNO₃ solution, and assayed radiometrically on a multi-channel analyzer both the $^{203}\text{Hg}(\text{II})$ complex loaded PUF and the aqueous phase. The results of the separation of Hg(II) complex by the spiking method are given in Table 5. This table indicates that the Hg(II) ions are easily and quantitatively separated/removed from different matrices and saline solutions etc. without an extensive treatment of samples.

TABLE 5
Determination of Hg(II) ions from different synthetic mixtures

Composition of synthetic mixtures ($\mu\text{g mL}^{-1}$)	Concentration of Hg(II) ions ($\mu\text{g mL}^{-1}$)	
	Added ($\mu\text{g mL}^{-1}$)	Found ($\mu\text{g mL}^{-1}$)
Al(25), Zn(25), Cu(25), Ag(25), Cd(25), Pb(25), Ni(25), Mn(25), Co(25), Ca(25), Mg(25), Ba(25)	7	6.92 ± 0.21
Eu(25), Tb(25), Y(25), Sc(25), Ce(25), Tape water	7	6.89 ± 0.19
10% NaCl	7	7.11 ± 0.22
	7	7.08 ± 0.17
	7	6.87 ± 0.21
	7	7.15 ± 0.25

CONCLUSION

The developed procedure for the removal of Hg(II) ions is rapid, quantitative, and efficient. It can be used with high certainty for the removal of Hg(II) ions from its associated ions in different matrices in a single stage operation. The sorption equilibrium of Hg(II) ions can be explained by different adsorption models presented in the paper. The Langmuir model as evidence is followed with a better correlation coefficient value as compared to others. The maximum sorption capacity (Q) was found to be equivalent to the experimental sorption capacity. The kinetic data and mass transfer phenomena indicates the intraparticle diffusion process and first order reaction respectively. The thermodynamics values indicate that sorption is spontaneous and endothermic chemisorption in nature. The stability of the sorbed complex is entropy driven. The sorption mechanism is the ligand addition and the direct interaction of the active sites of PUF with central metal ions has been suggested on the basis of the experimental data and the reported models.

REFERENCES

1. Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D. (1999) A review of potentially low – cost sorbents for heavy metals. *Water Res.*, 33: 2469–2479.
2. Fifield, F.W.; Haines, P.J. (2000) *Environmental Analytical Chemistry*, 2nd Ed.; Blackwell Science Ltd.: London, 262–270.
3. Marczenko, Z.; Balcerzak, M. (2000) Separation, preconcentration and spectrophotometry in inorganic analysis. E. Kloczko (Trans), Analytical spectroscopy library, Vol. 10, Elsevier: Chapter 30, 262–270.
4. Friedeberg, H. (1955) Separation and determinations of microgram quantities of silver, mercury, and copper with dithizone. *Anal. Chem.*, 27: 305–307.
5. Taylor, P. (2006) Removal of trace concentrations of heavy metals using complexing ion-exchange resins. *Sep. Sci. Technol.*, 41: 2575–2579.
6. Chiarle, S.; Ratto, M.; Rovatti, M. (2000) Mercury removal from water by ion exchange resins adsorption. *Water Research*, 34: 2971–2978.
7. Helal, A.A. (2006) Removal of mercury from water using pottery. *Radiochim. Acta*, 94: 53–57.
8. Hosseini, M.S.; Moghaddam, H.H. (2005) Sensitized extraction spectrophotometer determination of Hg(II) with Dithizone after its flotation as ion – associate using iodide and ferroin. *Talanta*, 67: 555–559.
9. Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V.K. (2005) Investigation of adsorption of lead, mercury and nickel from aqueous solutions onto carbon aerogel. *J. Chem. Technol. Biotechnol.*, 80: 469–476.
10. Soliman, E.M.; Saleh, M.B.; Ahmed, S.A. (2006) Alumina modified by dimethyl sulfoxide as a new selective solid phase extractor for separation and preconcentration of inorganic mercury (II). *Talanta*, 69: 55–60.
11. Kiwan, A.M. (1999) Use of dichloromethane with dithizone as an alternative solvent to carbon tetrachloride restricted by Montreal protocol. *Talanta*, 44: 947–950.
12. Chow, A.; Buksak, D. (1975) The extraction of mercury and methylmercury by diphenylthiocarbazone – treated polyurethane foams. *Can. J. Chem.*, 53: 1373–1377.
13. Palagyi, S.; Braun, T. (1992) Separation and preconcentration of trace elements and inorganic species on solid polyurethane foam sorbent. In: *Preconcentration Techniques for Trace Elements*; Alfassi, Z.B.; Wai, C.M., eds.; CRC Press: Boca Raton, FL, 363–400.
14. Braun, T.; Farag, A.B. (1974) Plasticized open-cell polyurethane foam as a universal matrix for organic reagents in trace element preconcentration. II Collection of mercury traces on Dithizone and diethyl-dithiocarbamate foams. *Anal. Chim. Acta*, 71: 133–40.
15. Saeed, M.M.; Hasany, S.M.; Ahmed, M. (1999) Adsorption and thermodynamic characteristics of Hg(II)–SCN complex onto polyurethane foam. *Talanta*, 50: 625–634.
16. Saeed, M.M.; Ahmed, M.; Ghaffar, A. (2003) Adsorption modeling of antimony(V) on diphenylthiocarbazone loaded polyurethane foam. *J. Radioanal. Nucl. Chem.*, 256: 121–126.
17. Saeed, M.M. (2006) Uptake of Tm(III) ions onto polyurethane foam from H₂O–ethanol mixture containing 1-(2-pyridylazo)-2-naphthol (PAN). *J. Radioanal. Nucl. Chem.*, 267: 427–437.
18. Saeed, M.M.; Ahmed, M. (2004) Retention, kinetics and thermodynamics profile of cadmium adsorption from iodide medium onto polyurethane foam and its separation from zinc bulk. *Anal. Chim. Acta*, 525: 289–297.
19. Saeed, M.M. (2008) Retention, thermodynamics and adsorption profile of Th(IV) ions onto 1-(2-Pyridylazo) 2-Naphthol (PAN) loaded polyurethane foam from acetate media and its separation from rare earths. *Sep. Sci. Technol.*, 43: 923–943.
20. Hasany, S.M.; Saeed, M.M.; Ahmed, M. (2001) Sorption of traces of silver ions onto polyurethane foam from acidic solution. *Talanta*, 54: 89–98.
21. Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. (1999) *Advance Inorganic Chemistry*, 6th Ed.; John Wiley & Sons, Inc.: 27–29, and 1143–1144.
22. Gimeno, O.; Plucinski, P.T.; Kolaczkowski, S.; Rivas, F.J.; Alvarez, P.M. (2003) Removal of the herbicide MCPA by commercial activated carbons: equilibrium, kinetics, and reversibility. *Ind. Eng. Chem. Res.*, 42: 1076–1086.
23. Irving, H.; Cooke, S.J.H.; Woodger, S.C.; Williams, R.J.P. (1949) Studies with dithizone Part II. Dithizone as a monobasic Acid. *J. Chem. Soc.*, 1847–1855.
24. Mawby, A.; Irving, H.M.N.H. (1971) The crystal structure of primary Zinc(II) dithizonate and its relevance to the stabilities of its o- and p-methyl derivatives. *Anal. Chim. Acta*, 55: 269–272.
25. Laing, M.; Alsop, P.A. (1970) The structure of primary nickel dithizonate. *Talanta*, 17: 242–244.
26. Harding, M.M.; Aitken, nee (1958) The crystal structure of the mercury Dithizone complex. *J. Chem. Soc.*, 4136–4143.
27. Saeed, M.M.; Bajwa, S.Z.; Ansari, M.S.; Ahmed, R. (2005) Solid phase sorption of micromount of Hg(II) onto 1-(2-thiazolylazo)-2-naphthol (TAN) loaded polyurethane foam. *Radiochim. Acta*, 93: 177–185.
28. Basolo, F.; Pearson, R.G. (1967) *Mechanism of Inorganic Compounds*; John Wiley, Inc.: New York, Chapter 2.
29. Sandle, E.B. (1959) *Colorimetric Determination of Traces of Metals*; Wiley Interscience: New York, p. 621. Chapter 27.